292 research outputs found

    Spatial Localization and Relativistic Transformation of Quantum Spins

    Full text link
    The purity of a reduced state for spins that is pure in the rest frame will most likely appear to degrade because spin and momentum become mixed when viewed by a moving observer. We show that such a boost-induced decrease in spin purity observed in a moving reference frame is intrinsically related to the spatial localization properties of the wave package observed in the rest frame. Furthermore, we prove that, for any localized pure state with separable spin and momentum in the rest frame, its reduced density matrix for spins inevitably appears to be mixed whenever viewed from a moving reference frame.Comment: 5 pages, 1 figur

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable

    Neumark Operators and Sharp Reconstructions, the finite dimensional case

    Get PDF
    A commutative POV measure FF with real spectrum is characterized by the existence of a PV measure EE (the sharp reconstruction of FF) with real spectrum such that FF can be interpreted as a randomization of EE. This paper focuses on the relationships between this characterization of commutative POV measures and Neumark's extension theorem. In particular, we show that in the finite dimensional case there exists a relation between the Neumark operator corresponding to the extension of FF and the sharp reconstruction of FF. The relevance of this result to the theory of non-ideal quantum measurement and to the definition of unsharpness is analyzed.Comment: 37 page

    Barycentric decomposition of quantum measurements in finite dimensions

    Full text link
    We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of k \le d^2 points of the outcome space, d< \infty being the dimension of the Hilbert space. We prove that for second countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein-Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on k \le d^2 points of the outcome space.Comment: !5 pages, no figure

    Spreading of a Macroscopic Lattice Gas

    Full text link
    We present a simple mechanical model for dynamic wetting phenomena. Metallic balls spread along a periodically corrugated surface simulating molecules of liquid advancing along a solid substrate. A vertical stack of balls mimics a liquid droplet. Stochastic motion of the balls, driven by mechanical vibration of the corrugated surface, induces diffusional motion. Simple theoretical estimates are introduced and agree with the results of the analog experiments, with numerical simulation, and with experimental data for microscopic spreading dynamics.Comment: 19 pages, LaTeX, 9 Postscript figures, to be published in Phy. Rev. E (September,1966

    Master Stability Functions for Coupled Near-Identical Dynamical Systems

    Full text link
    We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear stability problem for near-synchronous states (NSS) for all possible connectivity structures. We also derive a general sufficient condition for stable near-synchronization and show that the synchronization error scales linearly with the magnitude of parameter variations.Our analysis underlines significant roles played by the Laplacian eigenvectors in the study of network synchronization of near-identical systems.Comment: 11 pages, 2 figure

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    Epistemic and Ontic Quantum Realities

    Get PDF
    Quantum theory has provoked intense discussions about its interpretation since its pioneer days. One of the few scientists who have been continuously engaged in this development from both physical and philosophical perspectives is Carl Friedrich von Weizsaecker. The questions he posed were and are inspiring for many, including the authors of this contribution. Weizsaecker developed Bohr's view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein's ontically oriented position
    corecore